

دانشگاه آزاد اسلامی واحد تهران جنوب دانشکده تحصیلات تکمیلی

پایان نامه برای دریافت درجه کارشناسی ارشد "M.Sc" مهندسی شیمی – طراحی فرایند

عنوان:

شبیه سازی نشست کک در مبدل خط انتقال واحد اولفین توسط نرم افزار Fluent

استاد راهنما:

استاد مشاور:

نگارش:

فهرست مطالب

عنوان مطالب شماره صفحه		
١	چکیده	
۲	مقدمه	
۴	فصل اول: صنعت پتروشیمی و کلیات مربوط به واحد اولفین	
۵	١-١- صنعت پتروشيمي	
۶	١-١-١ صنعت پتروشيمي در ايران	
٧	۱–۲– مجتمعهای پتروشیمی در ایران	
۱۷	۱ –۳– مواد اولیهٔ صنعت پتروشیمی	
۲۱	۱–۴– فرایندهای شکست حرارتی	
۲۳	۱ –۵– کورهٔ شکست حرارتی	
74	۱–۵–۱ قسمت تشعشع	
۲۵	۱ –۲–۵ قسمت جابجایی	
۲۵	۱ –۵–۳ قسمت دودکش	
78	۱–۶– فرایند کلی در واحد اولفین	
78	۱–۶–۱ مسیر طی خوراک تا کوره	
48	۱–۶–۲– مسیر خوراک در کوره	
77	۷–۷ مبدلهای TLE در واحد اتیلن	
۲۸	۱–۸– مشخصات اولیه و طراحیهای مبدلهای TLE	
79	۱–۸–۱ افت فشار در مبدلهای TLE	
۲۹	۱–۸–۲ افت درجه حرارت در مبدل	
٣.	۱–۸–۳ بازیافت حرارتی حاصل از شکست	
٣.	۱–۸–۴ طولانی بودن دورهٔ عملیاتی واحد	
٣١	۱–۹– تفکیک و تخلیص جریان محصولات	
٣٢	۱-۱۰– متغیرهای طراحی و کنترل	
٣٣	۱-۱۰۱ بخار رقیق کننده	
37	۱-۱۰–۲ افت فشار در لولههای رآکتور	
٣۴	۱۱-۳ سرعت جرمی	
۳۵	۱-۱۰-۱ نشست کک	
٣۵	۱۱- کنترل واحد شکست حرارتی	
37	۱–۱۱– سیستم کنترل ساده	
3	۱–۱۲– سیستم کنترل خوراک و بخار ورودی	

٣٧	۱-۱۲-۱ کنترل درجه حرارت
٣٧	۱–۱۲–۲ کنترل میزان حرارت کوره
٣٧	۱–۱۳–۳ کنترل دمای هیدرو کربنهای خروجی
٣٧	۱–۱۲۴ کنترل اجزای هیدروکربنهای خروجی
٣٨	۱–۱۳– سیستم کنترل کنندهٔ کامپیوتری
٣٨	۱-۱۳-۱ اثر متغیرهای فرایند در سیستم کنترل کامپیوتری
٣٩	۱–۱۳–۲ توصیف سیستم کنترل کامپیوتری
٣٩	۱–۱۴ کنترلهای پیشرفته
41	فصل دوم: کلیات مربوط به کک و تشکیل آن
۴۲	مقدمه
۴۳	۲-۱– روش جلوگیری از نشست کک
۴۳	۲–۲– مکانیسم نشست کک
kk	۲–۲–۱ تشکیل کک کاتالیتیکی
45	۲-۲-۲ رشد کک موجود
45	۲–۲–۳ تشکیل کک ناشی از تولید پلیاًروماتیکها در فاز گازی
84	۲–۳– مسیرهای شیمیایی منتهی بر تشکیل کک
۶۳	۲–۴– فاکتورهای مؤثر بر تشکیل کک
۶۳	۲–۴–۱ تأثیر نسبت بخار همراه دما
84	۲–۴–۲ اثر افزودنیها
54	۲–۴–۳ اثر جنس فلز کویل
54	۲–۴–۴ اثر سولفور در کراکینگ گاز
۶۵	۲–۴–۵– اثر نوع خوراک ورودی
۶۷	۲–۵– آزمایش نمونهٔ کک حاصل از کویلهای آزمایشگاهی
ક્વ	فصل سوم: شبیهسازی به کمک روش CFD
٧٠	۳–۱– متدهای پیشگویی
٧٢	۳-۲- CFD چیست
٧۴	۳-۳- چگونگی عملکرد یک برنامهٔ CFD
٧۶	۳–۴– توانایی نرمافزار FLUENT
٧٨	۳–۵– أشنايي كلي با نرمافزار و قابليتهاي أن
٧٨	۳–۵–۱ قابلیتهای برنامه
٨٠	۳–۵–۲ دید کلی از نرمافزار FLUENT
A .	۳–۶– تورواوژی شبکه

۸۱	۳–۶–۱ مثال هایی از توپولوژی شبکهها
۸۱	٣-۶-٢- انتخاب نوع شبكهٔ مناسب
۸۲	۳–۷– چشماندازی از مدلهای فیزیکی به کار رفته در FLUENT
۸۳	۳–۷–۱ معادلات مومنتوم و پیوستگی
λ۴	۳–۷–۲ معادلات بقای مومنتوم
۸۴	۳-۷-۳ انتقال حرارت
۸۶	فصل چهارم: شبیهسازی مبدل خط انتقال TLE توسط نرمافزار FLUENT
۸γ	مقدمه
۸γ	۱–۴ هندسهٔ TLE
٨٨	۴–۲– شبکهبندی TLE
٨٨	۳–۴ مشخصات مبدل خط انتقال TLE خوراک اتان
۹.	۴–۴– روشهای حل عددی توسط FLUENT
۹۲	فصل پنجم: نتیجه گیری و پیشنهادها
१٣	نتیجه گیری
94	پیشنهادها
۱۰۸	منابع و مآخذ
١٠٩	فهرست منابع فارسى
١١٠	فهرست منابع لاتين
۱۱۲	چکیده انگلیسی

فهرست جدولها

ن شىمارە صىفحە		
11	مواد مورد نیاز مجتمع پتروشیمی اراک و محل تأمین آن	جدول ۱–۱
۸۹	شرایط مرزی به کار رفته در مدل	جدول ٤-١
۹.	فاکتورهای ; بر تخفیف	حدول ٤-٢

فهرست نمودارها

مار <i>ه</i> صفحه	عنوان ش
١٨	۱-۱- محصولات پتروشیمی از اتیلن
19	۱-۲- محصولات پتروشیم <i>ی</i> از پروپیلن
۲+	۱ -۳- محصولات پتروشیمی از نرمال بوتیلنها، ایزوبوتیلن و بتادین
91	٤-١- تاريخچهٔ همگرايي
90	(Mass Fraction) C_2H_4 میزان تبدیل -1 –۵
٩٦	(Mass Fraction) C_2H_2 میزان تبدیل –۲–۵
97	(Mass Fraction) ${ m C_2H_6}$ میزان تبدیل –۳–
٩٨	(Mass Fraction) C_3H_6 میزان تبدیل –4–
99	(Mole Fraction) ${ m C_2H_6}$ میزان تبدیل –۵–۵
1++	(Mole Fraction) H_2 میزان تبدیل -7 – میزان
1+1	۱۹-۵ میزان تبدیل Mole Fraction) CH ₄ میزان
1+7	(Mole Fraction) C_2H_2 میزان تبدیل $-\Lambda$ – م
1+4	(Mole Fraction) ${ m C_2H_4}$ میزان تبدیل -9 – میزان میزا
1+8	(Mole Fraction) ${ m C_3H_6}$ میزان تبدیل -۱۰-۵
1+0	٥-١١- نشست کک
1+7	٥-١٢- تغييرات دما
1.4	٥-١٣- تغييرات فشار

فهرست شىكلھا

صفحه	نوان شماره
71	١-١- منحنى تغييرات توليد محصول مايع
77	۱-۲- منحنی تغییرات نشست کک
۲۳	۱-۳- شکل ساختمانی کوره
78	۱- $\mathfrak Z-$ تشریح فرایند شکست حرارتی
79	۱-۵- نمودار تغییرات درجه حرارت مبدل بر حسب زمان اقامت
٤٠	۱ – ۲ – کنترل پیش خور کوره
٤٩	۱-۲ اثر دما روی سرعت تشکیل کک
٥+	۲-۲- اثر فشار جزئی هیدروژن روی سرعت تشکیل کک
٥+	۲-۳- اثر زمان اقامت گاز روی سرعت تشکیل کک
٥٦	۲-٤- دستگاه پیرولیز مجهز به ترموبالانس
٥٨	۲–۵ وابستگی دمایی سرعت تشکیل کک در TLE
71	۲-٦- تزریق ردیاب بین ناحیهٔ کراکینگ و پست کراکینگ
٦٢	۷-۲ تشکیل کک روی صفحهٔ استیلی 5MO3 در ۵۰ درجهٔ سانتی گراد
٦٣	۲-۸- ثابت سرعت تجزیهٔ اَروماتیکهای مختلف
٦٦	۲-۹- مونوکسید کربن تولید شده در مقابل زمان در کراکینگ هگزان
٦٦	۲-۱۰- گزینش پذیری کک در مقابل دما در کراکینگ هگزان
۸۱	۳-۱– انواع سلولهای قابل قبول توسط نرمافزار
90	(Mass Fraction) ${ m C_2H_4}$ میزان تبدیل -1
97	(Mass Fraction) ${ m C_2H_2}$ کانتورهای میزان تبدیل $-\Upsilon-0$
97	(Mass Fraction) ${ m C_2H_6}$ کانتورهای میزان تبدیل $- au$
٩٨	(Mass Fraction) ${ m C_3H_6}$ کانتورهای میزان تبدیل $-\xi$
99	(Mole Fraction) ${ m C_2H_6}$ میزان تبدیل ${ m C_2H_6}$
1 + +	(Mole Fraction) ${ m H_2}$ کانتورهای میزان تبدیل $-{ m extsf{7}}-$
1+1	(Mole Fraction) $ ext{CH}_4$ کانتورهای میزان تبدیل $- extstyle{V}$
1+1	(Mole Fraction) ${ m C_2H_2}$ میزان تبدیل $-{ m A-A}$
1+4	(Mole Fraction) ${ m C_2H_4}$ میزان تبدیل $-{ m 9-}$
1+8	(Mole Fraction) ${ m C_3H_6}$ میزان تبدیل ${ m C_3H_6}$
1+0	۵-۱۱- پروفایل نشست کک
1+7	٥-١٢- پروفايل تغييرات دما
1+4	٥-١٣- پروفايل تغييرات فشار

چکیده

تبدیل هیدروکربنهای اشباع پارافین به هیدروکربنهای غیر اشباع آلیناتیکی و آروماتیکی از جمله مهم ترین فرایندهای پتروشیمی محسوب می شود که تحت عنوان شکست حرارتی هیدروکربنها مشهور است. تشکیل کک در کورههای پیرولیز صنعتی مسألهای جدی است. کک بر دیوارهها و مجرای کوره بین خط انتقال کوره و خط انتقال مبادلهای TLE و ورودی چندشاخهای و متعدد TLE رسوب می کند. در این پروژه سرعت تشکیل کک توسط سینتیک شکست اتان تنظیم شده در مبدل خط انتقال TLE می باشد و به طور خلاصه هدف اصلی این کار، آمادهسازی مدلی ساده و هدفمند از یک TLE است که در صنعت و مدلسازی نشست کک قابل اهمیت است. مدل می تواند تأثیر کک را بر روی حرارتی گرمایی هیدرودینامیک و سینتیک لازم از فرایند رسوب را بسنجد.